5 research outputs found

    A Viable LoRa Framework for Smart Cities

    Get PDF
    This research is intended to provide practical insights to empower designers, developers and management to develop smart cities underpinned by Long Range (LoRa) technology. LoRa, one of most prevalent long-range wireless communication technologies, can be used to underpin the development of smart cities. This study draws upon relevant research to gain an understanding of underlying principles and issues involved in the design and management of long-range and low-power networks such as LoRa. This research uses empirical evidence that has been gathered through experiments with a LoRa network to analyse network design and identify challenges and then proposes cost-effective and timely solutions. Particularly, practical measurements of LoRa network dependencies and performance metrics are used to support our proposals. This research identifies a number of network performance metrics that need to be considered and controlled when designing and managing LoRa- specific networks from the perspectives of hardware, software, networking and security

    Research on the Leading Value Drive of Rural Homestead Transfer under Rural Revitalization——Based on the Evidences of China

    Get PDF
    With the development of urban-rural integration in China, the functional value of homestead bases has evolved from a single residential security value to a multiple composite values, and the property income of homestead bases has gradually become the value driver of transfer and the intrinsic demand of farm households. This paper takes Baitafan of Jinzhai County, Chongqing City, and Xiaofang Yu Village of Ji County as examples for in-depth discussion, and finds that the dominant value drivers of home base transfer mainly include three kinds: capitalization income, commercialization income, and non-farm employment income. The study concludes that it is important to give full play to the resource endowment effect and identify the dominant value of home base transfer according to local conditions to promote the standardized home base transfer and implement the rural revitalization strategy

    GC-MS and UHPLC-QTOFMS-assisted identification of the differential metabolites and metabolic pathways in key tissues of Pogostemon cablin

    Get PDF
    Pogostemon cablin is an important aromatic medicinal herb widely used in the pharmaceutical and perfume industries. However, our understanding of the phytochemical compounds and metabolites within P. cablin remains limited. To our knowledge, no integrated studies have hitherto been conducted on the metabolites of the aerial parts of P. cablin. In this study, twenty-three volatile compounds from the aerial parts of P. cablin were identified by GC-MS, predominantly sesquiterpenes. Quantitative analysis showed the highest level of patchouli alcohol in leaves (24.89 mg/g), which was 9.12 and 6.69-fold higher than in stems and flowers. UHPLC-QTOFMS was used to analyze the non-volatile compounds of leaf, stem and flower tissues. The differences in metabolites between flower and leaf tissues were the largest. Based on 112, 77 and 83 differential metabolites between flower-leaf, flower-stem and leaf-stem, three tissue-specific biomarkers of metabolites were identified, and the differential metabolites were enriched in several KEGG pathways. Furthermore, labeling differential metabolites in the primary and secondary metabolic pathways showed that flowers accumulated more lipids and amino acids, including proline, lysine and tryptophan; the leaves accumulated higher levels of terpenoids, vitamins and flavonoids, and stems contained higher levels of carbohydrate compounds. Based on the role of acetyl coenzyme A, the distribution and possible exchange mechanism of metabolites in leaves, stems and flowers of P. cablin were mapped for the first time, laying the groundwork for future research on the metabolites in P. cablin and their regulatory role

    Spatiotemporal Evolution of Carbon Emissions According to Major Function-Oriented Zones: A Case Study of Guangdong Province, China

    No full text
    Studying the spatiotemporal evolution of carbon emissions from the perspective of major function-oriented zones (MFOZs) is crucial for making a carbon reduction policy. However, most previous research has ignored the spatial characteristics and MFOZ influence. Using statistical and spatial analysis tools, we explored the spatiotemporal characteristics of carbon emissions in Guangdong Province from 2001 to 2021. The following results were obtained: (1) Carbon emissions fluctuated from 2020 to 2021 because of COVID-19. (2) Over the last 20 years, the proportion of carbon emissions from urbanization development zones (UDZs) has gradually decreased, whereas those of the main agricultural production zones (MAPZs) and key ecological function zones (KEFZs) have increased. (3) Carbon emissions efficiency differed significantly among the three MFOZs. (4) Carbon emissions from coastal UDZs were increasingly apparent; however, the directional characteristics of MAPZ and KEFZ emissions were not remarkable. (5) Carbon transfer existed among the three kinds of MFOZs, resulting in the economy and carbon emissions being considerably misaligned across Guangdong Province. These results indicated that the MFOZ is noteworthy in revealing how carbon emissions evolved. Furthermore, spatiotemporal characteristics, especially spatial characteristics, can help formulate carbon reduction policies for realizing carbon peak and neutrality goals in Guangdong Province

    A preliminary study on the synthetic lethal effect of berberine and olaparib on pancreatic cancer cells and its mechanism

    No full text
    Pancreatic cancer is a kind of malignant tumor with high mortality rate. Early operation and late chemoradiotherapy are the treatment criteria, but the prognosis is still poor. Berberine, an alkaloid compound present in many herbal plants, is capable of inducing oxidative DNA damage and downregulating homologous recombination repair (HRR) in cancer cells. Poly (ADP ribose) polymerase-1 (PARP-1) is a sensor of DNA damage with key roles in DNA repair. In this study, we demonstrated that berberine and PARP inhibitor olaparib have a synthetic lethal effect on pancreatic cancer cells. The expression level of RAD51 were reduced by berberine. Correspondingly, PARP became hyperactivated in response to berberine treatment. When berberine is combined with olaparib, the expression of Rad51 and Parp are inhibited. The combination of berberine and olaparib synergistically inhibit cell activity and induce cell apoptosis. In addition, the synergistic effect of berberine and olaparib can be reversed by apoptosis inhibitor and necrosis inhibitor. Together, the results indicate that berberine combined with olaparib have a synthetic lethal effect on pancreatic cancer cells
    corecore